> 10th Maths Answers Chapter 2 Numbers and Sequences Ex 2.4 ~ Kalvikavi
WhatsApp Group Join Now
Telegram Group Join Now

10th Maths Answers Chapter 2 Numbers and Sequences Ex 2.4

10th Maths Answers Chapter 2 Numbers and Sequences Ex 2.4

You can Download  10th Maths Book Solutions Guide Pdf, Tamilnadu State Board help you to revise the complete Syllabus and score more marks in your examinations.

1.Find the next three terms of the following sequence.

(i) 8, 24, 72, …….

(ii) 5, 1, -3, …….

(iii) `\frac{1}{4}`  `\frac{2}{9}` `\frac{3}{16}` ………..

Answer:

(i) 8, 24, 72…

In an arithmetic sequence a = 8,

d = t1 – t1 = t3 – t2

= 24 – 8       72 – 24

= 16 ≠ 48

So, it is not an arithmetic sequence. In a geometric sequence,

r = `\frac{t_{2}}{t_{1}}` = `\frac{t_{3}}{t_{2}}` = `\frac{t_{2}}{t_{1}}` = `\frac{t_{3}}{t_{2}}`

⇒ `\frac { 24 }{ 8 }` = `\frac { 72 }{ 24 }`

⇒ 3 = 3

∴ It is a geometric sequence

∴ The nth term of a G.P is tn = arn-1

∴ t4 = 8 × 34-1

= 8 × 33

= 8 × 27

= 216


t5 = 8 × 35-1

= 8 × 34

= 8 × 81

= 648


t6 = 8 × 36-1

= 8 × 35

= 8 × 243

= 1944

The next 3 terms are 8, 24, 72, 216, 648, 1944.

(ii) 5, 1, -3, …

d = t2 – t1 = t3 – t2

⇒ 1 – 5 = -3-1

-4 = -4 ∴ It is an A.P.

tn = a+(n – 1)d

t4 = 5 + 3 × – 4

= 5 – 12

= -7

15 = a + 4d

= 5 + 4 × -4

= 5 – 16

= -11

t6 = a + 5d

= 5 + 5 × – 4

= 5 – 20

= – 15

∴ The next three terms are 5, 1, -3, -7, -11, -15.

(iii) \frac { 1 }{ 4 },\frac { 2 }{ 9 },\frac { 3 }{ 16 },………..

Here an = Numerators are natural numbers and denominators are squares of the next numbers

`\frac { 1 }{ 4 }`,`\frac { 2 }{ 9 }`,`\frac { 3 }{ 16 }` ,`\frac { 4 }{ 25 }`,`\frac { 5 }{ 36 }`,`\frac { 6 }{ 49 }`………….

2.Find the first four terms of the sequences whose nth terms are given by

(i) an = n3 -2

Answer:

an = n3 – 2

a1 = 13 – 2 = 1 – 2 = -1

a2 = 23 – 2 = 8 – 2 = 6

a3 = 33 – 2 = 27 – 2 = 25

a4 = 43 – 2 = 64 – 2 = 62

The four terms are -1, 6, 25 and 62


(ii) an = (-1)n+1 n(n + 1)

Answer:

an = (-1)n+1 n(n + 1)

a1 = (-1)2 (1) (2) = 1 × 1 × 2 = 2

a2 = (-1)3 (2) (3) = -1 × 2 × 3 = -6

a3 = (-1)4 (3) (4) = 1 × 3 × 4 = 12

a4 = (-1)5 (4) (5) = -1 × 4 × 5 = -20

The four terms are 2, -6, 12 and -20

(iii) an = 2n2 – 6

Answer:

an = 2 n2 – 6

a1 = 2(1)2 – 6 = 2 – 6 = -4

a2 = 2(2)2 – 6 = 8 – 6 = 2

a3 = 2(3)2 – 6 = 18 – 6 = 12

a4 = 2(4)2 – 6 = 32 – 6 = 26

The four terms are -4, 2, 12, 26

3.Find the nth term of the following sequences

(i) 2, 5, 10, 17, ……….

(ii) 0, `\frac { 1 }{ 2 }`, `\frac { 2 }{ 3 }`,…..

(iii) 3, 8, 13, 18, ……

Answer:

(i) 2, 5, 10, 17

= 12 + 1, 22 + 1, 32 + 1, 42 + 1 ……….

∴ nth term is n2+1

(ii) 0, `\frac { 1 }{ 2 }`,`\frac { 2 }{ 3 }`,………….

= `\frac { 1 - 1 }{ 1 }`,`\frac { 2 - 1 }{ 2 }`,`\frac { 3 - 1 }{ 3 }`…..

⇒ `\frac { n - 1 }{ 1 }`

∴ nth term is `\frac { n - 1 }{ 1 }`

(iii) 3, 8, 13, 18

a = 3

d = 5

tn = a + (n – 1)d

= 3 + (n – 1)5

= 3 + 5n – 5

= 5n – 2

∴ nth term is 5n – 2


4.Find the indicated terms of the sequences whose nth terms are given by

(i) an = `\frac { 5n }{ n + 2 }` ; a6 and a13

(ii) an = -(n2 – 4); a4 and a11

Answer:


5.Find a8 and a15 whose nth term is

Answer:

6.If a1 = 1, a2 = 1 and an = 2an-1 + an-2 n > 3, n ∈ N. Then find the first six terms of the sequence.

Answer:

a1 = a2 = 1

an = 2an-1 + an-2

a3 = 2a3-1 + a3-2 = 2a2 + a1

= 2(1) + 1 = 3

a4 = 2a4-1 + a4-2

= 2a3 + a2

= 2(3) + 1 = 6 + 1 = 7

a5 = 2 a5-1 + a5-2

= 2a4 + a3

= 2(7) + 3 = 17

a6 = 2a6-1 + a6-2

= 2a5 + a4

= 2(17) + 7

= 34 + 7 = 41

The sequence is 1, 1, 3, 7, 17,41, …

Share:

0 Comments:

Post a Comment